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Implication for health policy/practice/research/medical education:
Cisplatin is a broadly administered chemotherapeutic compound for the treatment of several solid tumors; though, its use is 
frequently limited due to the development of nephrotoxicity. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class 
of drugs utilized to treat type 2 diabetes by inhibiting the SGLT2 accountable for glucose reabsorption in the kidneys. These 
inhibitors have also shown promise in improving renal function following administration of cisplatin, a commonly used 
chemotherapeutic drug that can cause kidney damage. 
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Introduction
Cisplatin is a widely used chemotherapy drug that 
is effective against a variety of cancers. However, its 
administration is limited due to its nephrotoxicity, which 
can lead to acute renal damage and chronic renal failure 
(1). Sodium-glucose cotransporter 2 (SGLT2) inhibitors 
are a class of drugs used to treat type 2 diabetes mellitus 
(T2DM) by blocking glucose reabsorption in the kidneys. 
In recent years, SGLT2 inhibitors have been shown to have 
potential in reducing cisplatin-induced nephrotoxicity 
(2-4).

Numerous studies have determined the beneficial 
effects of SGLT2 inhibitors in reducing cisplatin-induced 
nephrotoxicity. These drugs have been disclosed to 
improve renal function, diminish oxidative stress, and 
decrease inflammation. Additionally, SGLT2 inhibitors 
have been shown to reduce the accumulation of cisplatin 

in the kidneys, which is thought to be one of the main 
mechanisms of cisplatin-induced nephrotoxicity (5,6).

A previous experimental study showed that treatment 
with the SGLT2 inhibitor empagliflozin significantly 
reduced cisplatin-induced acute kidney injury (AKI). 
The study found that empagliflozin treatment reduced 
oxidative stress and inflammation in the kidneys, as well 
as reducing the expression of genes associated with renal 
fibrosis (7).

Protective effects of SGLT2 inhibitor dapagliflozin on 
renal function and reduced the incidence of AKI was also 
detected in other studies. Hence, SGLT2 inhibitors have 
shown promising renoprotective effects in preclinical 
and clinical studies evaluating cisplatin-induced 
nephrotoxicity (5,8-10). This mini-review sought to 
identify relevant studies investigating the administration 
of SGLT2 inhibitors in cisplatin nephrotoxicity.

Cisplatin-induced nephrotoxicity is a crucial concern in cancer patients, limiting the dose 
and duration of cisplatin therapy. Several mechanisms contribute to cisplatin nephrotoxicity, 
including oxidative stress, inflammation, and mitochondrial dysfunction. SGLT2 inhibitors 
have emerged as a promising therapeutic option for various renal disorders due to their ability 
to restore renal homeostasis and mitigate renal injury.
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Search strategy
For this review, we conducted a comprehensive search 
of various databases including PubMed, Web of Science, 
EBSCO, Scopus, Google Scholar, Directory of Open Access 
Journals (DOAJ) and Embase. We used different keywords 
such as cisplatin-induced nephrotoxicity, sodium-glucose 
cotransporter 2 inhibitors, oxidative stress, inflammation, 
mitochondrial dysfunction, acute kidney injury, chronic 
kidney disease, acute renal failure, empagliflozin, SGLT2 
inhibitors and renoprotection.

Morphologic lesions of cisplatin-induced renal toxicity
Cisplatin nephrotoxicity can lead to the loss of renal 
function, ultimately resulting in acute renal failure. 
Cisplatin accumulation in renal cells can cause damage 
to the kidney tubules, running to shedding and 
necrosis of the tubular epithelial cells (1). Cisplatin-
induced nephrotoxicity is characterized by a decrease 
in renal blood flow and glomerular filtration rate. The 
accumulation and retention of cisplatin in renal cells can 
lead to DNA damage, oxidative stress, apoptosis, and 
autophagy. Cisplatin-induced nephrotoxicity can result 
in ischemia or necrosis of the proximal renal tubular 
epithelial cells (11). Cisplatin can cause damage to the 
kidney tubules, directing to shedding and necrosis of the 
tubular epithelial cells. Cisplatin-induced nephrotoxicity 
can result in glomerular injury, including glomerular 
sclerosis and mesangial cell proliferation. Inflammatory 
infiltrates in the renal interstitium can be observed in 
cisplatin-induced nephrotoxicity. Prolonged exposure to 
cisplatin can lead to the development of renal fibrosis, 
characterized by the accumulation of extracellular matrix 
components (1,12). Cisplatin can cause vascular changes 
in the kidneys, including endothelial cell injury and 
thrombotic microangiopathy. These morphologic lesions 
contribute to the development of acute renal failure and 
the impairment of renal function in cisplatin-treated 
patients. Clinically, these morphologic lesions contribute 
to the extension of acute renal failure and the impairment 
of renal function in cisplatin-treated patients (1,13). 

A short look to the renoprotective strategies to prevent 
cisplatin-induced renal toxicity
These renoprotective strategies have shown potential in 
preventing cisplatin-induced renal toxicity. Adequate 
hydration is recommended to prevent cisplatin-induced 
nephrotoxicity by increasing urine flow and reducing 
the concentration of cisplatin in the kidneys. Magnesium 
supplementation has been shown to reduce cisplatin-
induced nephrotoxicity by reducing oxidative stress 
and inflammation (12,14). Mannitol has been shown to 
reduce cisplatin-induced nephrotoxicity by increasing 
renal blood flow and reducing the concentration of 
cisplatin in the kidneys. Antioxidants like vitamin 
E and N-acetylcysteine have been shown to reduce 
cisplatin-induced nephrotoxicity by reducing oxidative 

stress and inflammation. Renoprotective agents such 
as erythropoietin and angiotensin-converting enzyme 
inhibitors have been shown to reduce cisplatin-induced 
nephrotoxicity by reducing inflammation and oxidative 
stress (15). Mesenchymal stem cells have been detected 
to have renoprotective properties in cisplatin-induced 
nephrotoxicity by reducing inflammation and oxidative 
stress. Anti-inflammatory agents such as dexamethasone 
have been shown to reduce cisplatin-induced 
nephrotoxicity by reducing inflammation. Inhibition 
of PKCδ has been shown to reduce cisplatin-induced 
nephrotoxicity without blocking chemotherapeutic 
efficacy in mouse models of cancer (16,17).

Recently, SGLT2 inhibitors have been studied for their 
potential role in the treatment of acute renal failure. SGLT2 
inhibitors exert a variety of effects on the kidney, directly 
and indirectly linked to reduced glucose reabsorption, 
providing acute and chronic renal protection (18,19). The 
considerable meta-analysis and post hoc investigations 
have failed to realize a correlation amid SGLT2 
inhibitors and acute renal failure (20). On the contrary, 
a possibly protective efficacy has been proposed (19). A 
pharmacovigilance study evaluated SGLT2 inhibitor-
related AKI and found that pharmacoepidemiology 
studies are needed to compare the adverse events in 
different SGLT2 inhibitors (21). A clinical trial called 
PREVENTS-AKI is currently underway to investigate the 
potential of SGLT2 inhibitors to prevent AKI in intensive 
care patients (22).

There have been concerns grown concerning the risk 
for acute renal failure with SGLT2 inhibitors, particularly 
in patients with predisposing factors such as hypovolemia. 
SGLT2 inhibitors may contribute to acute renal failure by 
inducing volume depletion because of their natriuretic and 
osmotic efficacies, particularly in cases with predisposing 
factors such as hypovolemia (23). Additionally, the 
volume and intra-renal hemodynamic impacts of these 
agents may be synergistic when combined with frequently 
prescribed renin-angiotensin-aldosterone system (RAAS) 
antagonists and traditional diuretics in cases with type 2 
diabetes and can deteriorate renal function (23,24).

Canagliflozin, an SGLT2 inhibitor, has emerged as a 
promising therapeutic agent in the management of T2DM. 
In addition to its well-established glycemic control effects, 
recent research has suggested that canagliflozin may offer 
potential renal protection benefits (25,26). Mechanisms 
underlying the potential renal protection by canagliflozin 
primarily involve hemodynamic effects, reduction in 
tubulointerstitial inflammation and fibrosis, reduction in 
oxidative stress, and modulation of local RAAS activity 
(19). Multiple clinical trials, including the CANVAS 
(CANagliflozin CardioVascular Assessment Study) 
program, have demonstrated significant reductions in 
albuminuria, decline in renal function, and a lower risk 
of adverse renal outcomes in patients with T2DM treated 
with canagliflozin (27-29). The renal protective effects of 
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canagliflozin are likely multifactorial, with contributions 
from both hemodynamic and direct tubuloprotective 
mechanisms. The reduction of glomerular hyperfiltration 
and improvement in intraglomerular perfusion, coupled 
with the attenuation of tubulointerstitial fibrosis and 
inflammation, may collectively contribute to the observed 
renal benefits (30,31). These effects could be mediated 
by various factors, including glucose-independent effects 
and RAAS modulation. Notably, recent evidence suggests 
that canagliflozin may provide renal benefits beyond 
its glucose-lowering effects, making it a promising 
therapeutic option in cisplatin-induced nephrotoxicity 
management (18,32).

Conclusion
The mechanism by which SGLT2 inhibitors ameliorate 
cisplatin nephrotoxicity appears that the inhibition of 
SGLT2 leads to increased glucose excretion, resulting in 
a shift towards fatty acid oxidation as an energy source in 
the kidney, which may contribute to cellular protection. 
Additionally, SGLT2 inhibitors have been shown to 
improve renal hemodynamics and reduce renal fibrosis, 
further supporting their renoprotective effects.
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